/  Reading   /  How do Uncertainties in Atomic Parameters Influence Theoretical Predictions of X-Ray Production Cross Sections By Proton Impact?
cross sections

How do Uncertainties in Atomic Parameters Influence Theoretical Predictions of X-Ray Production Cross Sections By Proton Impact?

Abstract

The emission of characteristic X-rays induced by proton impact is a phenomenon known since the first half of the 20th century. Its more widely known application is the analytical technique Particle Induced X-ray Emission (PIXE). Several models have been developed to calculate, first, ionization cross-sections and then the subsequent X-ray production cross-sections. However, to carry out the comparisons of these predictions with experimental data it is necessary to use atomic parameters databases (fluorescence yields, Coster-Kronig transition probabilities, emission rates) that also have experimental uncertainties. In this work, it is demonstrated how these values do not allow to decide which model describes more accurately the cross-sections, due to a final “theoretical uncertainty” obtained through the propagation of the original uncertainties.

Author(s): J Miranda, Institute of Physics, National Autonomous University of Mexico, Scientific Research Circuit S/N, Coyoacan-04510, Mexico

Keywords: Ionization, X-ray production, Protons, Fluorescence yield, Coster-Kronig, Uncertainties

References:

S. A. E. Johansson and J. L. Campbell, PIXE: A Novel Technique for Elemental Analysis (John Wiley, Chichester, 1988).

G. Lapicki, Nucl. Instrum. Meth. B 189, 8 (2002). https://doi.org/10.1016/S0168-583X(01)00987-9

H. Paul and J. Sacher, At. Data Nucl. Data Tables 42, 105(1989). https://doi.org/10.1016/0092-640X(89)90033-8

A. Kahoul, B. Deghfel, A. Abdellatif and M. Nekkab, Rad. Phys. Chem. 80, 1300 (2011). https://doi.org/10.1016/j.radphyschem.2011.06.016

J. Miranda and G. Lapicki, At. Data Nucl. Data Tables 100, 651(2014). https://doi.org/10.1016/j.adt.2013.07.003

J. Miranda and G. Lapicki, At. Data Nucl. Data Tables 118, 444 (2018).

L. C. Phinney, J. L. Duggan, G. Lapicki, F. U. Naab, K. Hossain, and F. D. McDaniel J. Phys. B 42, 085202 (2009). https://doi.org/10.1088/0953-4075/42/8/085202

E. Merzbacher and H.W. Lewis, Handbuch der Physik (Springer, Berlin, 1958) p.166.

J. H. McGuire and P. Richard, Phys. Rev. A 8, 1374 (1973). https://doi.org/10.1103/PhysRevA.8.1374

W. Brandt and G. Lapicki, Phys. Rev. A 23, 1717 (1981). https://doi.org/10.1103/PhysRevA.23.1717

C. C. Montanari, J. N. Miraglia and N. R. Arista, Phys. Rev. A 66, 042902 (2002). https://doi.org/10.1103/PhysRevA.66.042902

G. Schiwietz, K. Czerski, M. Roth, F. Staufenbiel, and P.L. Grande, Nucl. Instrum. Meth. B 225, 4 (2004). https://doi.org/10.1016/j.nimb.2004.05.041

L. Sarkadi and T. Mukoyama, Nucl. Instrum. Meth. B 61, 167(1991). https://doi.org/10.1016/0168-583X(91)95456-N

G. Lapicki and F. D. McDaniel, Phys. Rev. A 22, 1896 (1980). https://doi.org/10.1103/PhysRevA.22.1896

G. Lapicki, R. Mehta, J. L. Duggan, P. M. Kocur, J. L. Price, and F. D. McDaniel, Phys. Rev. A 34, 3813 (1986). https://doi.org/10.1103/PhysRevA.34.3813

J. L. Campbell, At. Data Nucl. Data Tables 85, 291 (2003). https://doi.org/10.1016/S0092-640X(03)00059-7

W. Maenhaut and K. G. Malmqvist, Handbook of X-Ray Spectrometry, edited by R. E. Van Grieken and A. A. Markowicz, p. 719 (Marcel Dekker, New York, 2002).

S. J. Cipolla, Comp. Phys. Comm. 182, 2439 (2011). https://doi.org/10.1016/j.cpc.2011.06.004

G. Lapicki, J. Phys. B 41, 115201 (2008). https://doi.org/10.1088/0953-4075/41/11/115201

M.O. Krause, J. Phys. Chem. Ref. Data 8, 307(1979). https://doi.org/10.1063/1.555594

A. Kahoul, V. Aylikci, N. KupAylikci, E. Cengiz, and G. Apaydin, Rad. Phys. Chem. 81, 713 (2012). https://doi.org/10.1016/j.radphyschem.2012.03.006

J.L. Campbell, At. Data Nucl. Data Tables 95, 115 (2009). https://doi.org/10.1016/j.adt.2008.08.002

V. Aylikci, A. Kahoul, N. KupAylikci, E. Tiraşoğlu, İ.H. Karahan, A. Abassi, M. Dogan, Rad. Phys. Chem. 106, 99 (2015). https://doi.org/10.1016/j.radphyschem.2014.06.030

J. L. Campbell and J.-X. Wang, At. Data Nucl. Data Tables 43, 281 (1989). https://doi.org/10.1016/0092-640X(89)90004-1

S. Puri, At. Data Nucl. Data Tables 93, 730 (2007). https://doi.org/10.1016/j.adt.2007.05.002

S.I. Salem, S.L. Panossian, and R.A. Krause, At. Data Nucl. Data Tables 14, 91 (1974). https://doi.org/10.1016/S0092-640X(74)80017-3

G. Lapicki, J. Phys. Chem. Ref. Data 18, 111 (1989). https://doi.org/10.1063/1.555838

D. Singh, H. R. Verma, P. S. Singh, and C. S. Khurana, Indian J. Phys. 66B, 281 (1992).

Y. C. Yu, E. K. Lin, C. W. Wang, P. J. Tsai, and W. C. Cheng, Chinese J. Phys. 32, 345 (1994).

S.J. Cipolla and C.J. Verzani, Nucl. Instrum. Meth. B 99, 18 (1995). https://doi.org/10.1016/0168-583X(95)00038-0

S. Ouziane, A. Amokrane, and M. Zilabdi, Nucl. Instrum. Meth. B 161, 141 (2001). https://doi.org/10.1016/S0168-583X(99)00916-7

S. Ouziane and A. Amokrane, Microchim. Acta 139, 131 (2002). https://doi.org/10.1007/s006040200051

B. H. Kusko, Ph.D. Thesis, the University of California at Davis, 1983.

0 0 votes
Article Rating
Subscribe
Notify of
0 Comments
Inline Feedbacks
View all comments
CHITKARA UNIVERSITY ADMINISTRATIVE OFFICE SARASWATI KENDRA, PO Box No. 70 SCO – 160-161,Sector – 9C, Chandigarh – 160009, India. +91-172-2741000, +91-172-4691800 chitkarauniversitypublications@chitkara.edu.in

    0
    Would love your thoughts, please comment.x
    ()
    x