Chitkara Open Access Journals - Blog

The Three-Body Structure of 2n and 2p Halo Nuclei

The Three-Body Structure of 2n and 2p Halo Nuclei

Abstract

A three-cluster model developed for ternary fission studies has been applied for the first time to study the three-body structure of 2n and 2p halo nuclei. For the experimentally known 2n, 2p halo nuclei, all possible ternary fragmentation potential energy surface (PES) is calculated. The two-body breakup reported earlier, clearly indicated a strong minimum in the PES corresponding to 1n/1p and/or 2n/2p cluster plus core configuration. However, the present calculations of PES reveal that the three- body breakup does not result always with 2n and/or 2p as a cluster. A 1n and/or 1p cluster along with the core is initially formed, and then the core loses one nucleon to make either a 2n plus core or 2p plus core structure. The results are substantiated with the calculations of preformation probability calculated within quantum mechanical fragmentation theory

Author(s)

I. Sreeja and M. Balasubramaniam

Keywords

Halo nuclei, Cluster Core model, Preformation Probability

URL

https://jnp.chitkara.edu.in/abstract.php?id=705

References

  • I. Tanihata, H. Hamagaki, O. Hashimoto, S. Nagamiya et al., Phys. Lett. 160B, 380 (1985).
  • I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida et al., Phys. Rev. Lett. 55, 2676 (1985). https://doi.org/10.1103/PhysRevLett.55.2676
  • I. Tanihata, T. Kobayashi, O. Yamakawa, S. Shimoura et al., Phys. Lett. B 206, 592 (1988).
  • M. Brodeur, T. Brunner, C. Champagne, S. Ettenenauer et al., Phys. Rev. Lett. 108, 052504 (2012). https://doi.org/10.1103/PhysRevLett.108.052504
  • B. V. Danilin, I. J. Thompson, J. S. Vaagen and M. V. Zhukov, Nucl. Phys. A 632, 383 (1998). https://doi.org/10.1016/S0375-9474(98)00002-5
  • R. K. Gupta, M. Balasubramaniam, R. K. Puri and W. Scheid, J. Phys. G: Nucl. Part. Phys. 26, L23 (2000). https://doi.org/10.1088/0954-3899/26/2/102
  • R. K. Gupta, M. Balasubramaniam et al., J. Phys. G: Nucl. Part. Phys. 32, 565 (2006). https://doi.org/10.1088/0954-3899/32/4/012
  • G. Sawhney, M. K. Sharma and R. K. Gupta J. Phys. G: Nucl. Part. Phys 41, 055101 (2014). https://doi.org/10.1088/0954-3899/41/5/055101
  • R. K. Gupta, Sushil Kumar et al., J. Phys. G: Nucl. Part. Phys. 28, 699 (2002). https://doi.org/10.1088/0954-3899/28/4/309
  • W. Horiuchi and Y. Suzuki, Phys. Rev. C 74, 034311 (1961). https://doi.org/10.1103/PhysRevC.74.034311
  • ] T. Frederico, M. T. Yamashita and Lauro Tomio, Nucl. Phys. A 787, 561c-568c (2007). https://doi.org/10.1016/j.nuclphysa.2006.12.085
  • I. Mazhumdar, Pramana – J. Phys., 75, 81 (2010). https://doi.org/10.1007/s12043-010-0067-y
  • Shi-Sheng Zhang, M. S. Smith, Zhong-Shu Kang and Jie Zhao, Phys. Lett. B 730, 30 (2014).
  • L. A. Souza, F. F. Bellotti and T. Frederico, J. Phys. 630, 012043 (2015). [15] Y. Togano, T. Nakamura, Y. Kondo, J. A. Tostevin et al., Phys. Lett. B 761, 412 (2016). https://doi.org/10.1016/j.physletb.2016.08.062 [
  • E. Rydberg, C. Forssen and L. Platter, Few Body Syst. 58, 143 (2017). https://doi.org/10.1007/s00601-017-1307-1
  • W. Schwab et al., Z. Phys. A 350, 283 (1995). https://doi.org/10.1007/BF01291183
  • A. Ozawa et al., Phys. Lett. B 334, 18 (1994). https://doi.org/10.1016/0370-2693(94)90585-1
  • Z. Ren, B. Chen, Z. Ma and G. Xu, Phys. Rev. C 53, 572 (1996). https://doi.org/10.1103/PhysRevC.53.R572
  • R. Kanungo, M. Chiba, S. Adhikari, D. Fang et al., Phys. Lett. B 571, 21 (2003). https://doi.org/10.1016/j.physletb.2003.07.050
  • R. Kanungo, Nucl. Phys. A 738, 293 (2004). https://doi.org/10.1016/j.nuclphysa.2004.04.048
  • L. V. Grigorenko, Yu. L. Parfenova and M. V. Zhukov, Phys. Rev. C 71, 051604(R) (2005).
  • W. Geithner, T. Neff, G. Audi, K. Blaum et al., Phys. Rev. Lett. 101, 252502 (2008). https://doi.org/10.1103/PhysRevLett.101.252502
  • W.S. Hwash, Int. J. Mod. Phys. E 25, 1650105 (2016). https://doi.org/10.1142/S0218301316501056
  • R. K. Gupta, Proceedings of the Vth International Conference on Nuclear Reaction Mechanisms, Varenna, Italy (1988) p. 416.
  • S. S. Malik and R. K. Gupta, Phys. Rev. C 39 1992 (1989). https://doi.org/10.1103/PhysRevC.39.1992
  • R. K. Gupta, W. Scheid, and W. Greiner, J. Phys. G: Nucl. Phys. 17 1731(1991). https://doi.org/10.1088/0954-3899/17/11/018
  • S. Kumar and R. K. Gupta, Phys. Rev. C 55 218 (1997). https://doi.org/10.1103/PhysRevC.55.218
  • R. K. Gupta, in Heavy Elements and Related New Phenomena, edited by W. Greiner and R.K. Gupta (World Scientific, Singapore, 1999), Vol. II, p. 730. https://doi.org/10.1142/9789812816634_0020
  • K. Manimaran and M. Balasubramaniam, Phys. Rev. C 79, 024610 (2009). https://doi.org/10.1103/PhysRevC.79.024610
  • K. Manimaran and M. Balasubramaniam, Eur. Phys. J. A 45, 293 (2010). https://doi.org/10.1140/epja/i2010-11000-7
  • K. Manimaran and M. Balasubramaniam, J. Phys. G: Nucl. Part. Phys. 37, 045104 (2010). https://doi.org/10.1088/0954-3899/37/4/045104
  • K. Manimaran and M. Balasubramaniam, Phys. Rev. C 83, 034609 (2011). https://doi.org/10.1103/PhysRevC.83.034609
  • K. R. Vijayaraghavan, W. von Oertzen and M. Balasubramaniam, Eur. Phys. J. A 48, 27 (2012). https://doi.org/10.1140/epja/i2012-12027-4
  • K. R. Vijayaraghavan, M. Balasubramaniam and W. von Oertzen, Phys. Rev. C 90, 024601 (2014). https://doi.org/10.1103/PhysRevC.90.024601
  • M. Balasubramaniam, K. R. Vijayaraghavan and C. Karthickraj, Pramana – J. Phys., 85, 423 (2015).
  • M. Balasubramaniam, K. R. Vijayaraghavan and K. Manimaran, Phys. Rev. C 93, 014601 (2016). https://doi.org/10.1103/PhysRevC.93.014601
  • G. Audi, F. G. Kondev, M. Wang, B. Pfeiffer, X. Sun, J. Blachot and M. MacCormik, Chin. Phys. C 36(12), 1157 (2012) https://doi.org/10.1088/1674-1137/36/12/
  • P. Mller, J. R. Nix, W. D. Myers, W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)
  • J. Blocki, J. Randrup, W. J. Swiatecki and C. F. Tsang, Ann. Phys. (NY) 105, 427 (1977). https://doi.org/10.1016/0003-4916(77)90249-4
  • H. Kröger and W. Scheid, J. Phys. G 6, L85 (1980). https://doi.org/10.1088/0305-4616/6/4/006