Collapsible and Spiky Wave for Dust Acoustic Waves in Dusty Plasmas
Abstract:
In multicomponent dusty plasma, the Sagdeev Potential (SP) approach is employed to formulate the Energy Equation for arbitrary amplitude dust acoustic waves (DAWs), where an amount of electrons is trapped in potential well. The dependence of amplitude and width of the solitons of Sagdeev Potential on plasma parameters is widely discussed. The range of Mach number has determined for solitary waves (SWs) with the help of critical Mach number. The solution of the Energy Equation obtained, has been discussed by expanding the expression for SP in the higher terms of φ . The different solutions of Energy Equation give us SWs, breakable waves, collapsible waves and SWs with spiky and explosive nature. The role of temperature ratio on the transformation of SWs to collapsible waves is discussed. With the help of standard values of plasma parameters relevant to such plasma environment, the results so obtained, are discussed. These results may help us to explain the nature of SWs in different astrophysical situations.
Author(s):
DOI:
Keywords:
References:
Alfvén, H. (1982). Paradigm Transition in cosmic Plasma. Physics, Phys. Scr. T2A, 10–19. https://doi.org/10.1088/0031-8949/1982/T2A/002.
Alinejad, H. (2011). Dust ion-acoustic SWs in a dusty plasma with arbitrarily charged dust and flat-trapped electrons, Astrophys Space Sci 334, 331–336. https://doi.org/10.1007/s105
Banerjee, G. & Maitra, S. (2016). Arbitrary amplitude dust ion acoustic soliton and double layers in the presence of nonthermal positrons and electrons, Phys. of Plasma, 23, 123701–10. https://doi.org/10.1063/1.4971223
Barkan, A., D’Angelo, N. and Merlino, R. L. (1995). Laboratory experiments on electrostatic ion cyclotron waves in a dusty plasma, Planet. Space Sci. 43, 905–908. https://doi.org/10.1016/0032-0633 (94)00226-H.
Barnes, M. S., Keller, J. H., Forster, J. C., O’Neill, J. A. and Coultas, D. K. (1992). Transport of Dust Particles in Glow-Discharge Plasmas, Phys. Rev. Lett. 68, 313–316. https://doi.org/10.1103/PhysRevLett.68.313.
Das, G. C., Tagare, S. G. and Sarma, J. (1998). Quasipotential analysis for ion-acoustic SWs and double layers in plasmas, Planet. Space Sci., 46, 417–424. https://doi.org/10.1016/S0032-0633 (97)00142-6.
Das, G. C., Sing, K. I. and Karmakar, B. (1989). Nonlinear ion-acoustic SWs in ion-beam plasma. Plasma Physics and Controlled Fusion 31(1), 69–78. https://doi.org/10.1088/0741-3335/31/1/006
Deka, M. K., Dev, A. N., Misra, A. P. and Adhikary, N. C. (2018). Characteristics of SWs in a relativistic degenerate ion beam driven magneto plasma, Phys. of Plasma, 25, 012102–8. https://doi.org/10.1063/1.5004070.
Dev, A. N., Deka, M. K., Sarma, J. and Adhikary, N. C. (2015). Shock wave solution in hot adiabatic dusty plasma having negative and positive non-thermal ions with trapped electron. Journal of Korean physical society, 67, 339–345. https://doi.org/10.3938/jkps.67.339.
Dev, A. N. (2017). Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas, Chin. Phys. B, 26(2), 025203–7. https://doi.org/10.1088/1674-1056/26/2/025203.
Nejoh, Y. (1988). Association between weakly relativistic ion modulation modes in collisionless plasma, Phys.of Fluids 31, 2914. https://doi.org/10.1063/1.867000
Nejoh, Y. (1990). New spiky SWs and explosive modes in magnetized plasma with trapped electrons, Physics letters A, 143, 62–66. https://doi.org/10.1016/0375-9601 (90)90799-T
Nejoh, Y. (1994). A new spiky soliton and an explosive mode of the nonlinear drift wave equation, IEEE transactions on plasma science, 22, 205–209. https://doi.org/10.1109/27.279024
Nejoh, Y. (1992). Double layers, spiky solitary waves, and explosive modes of relativistic ion-acoustic waves propagating in plasma, Phys. of Fluids, 4(9), 2831–2840. https://doi.org/10.1063/1.860157.
Northrop, T. G. (1992). Dusty Plasmas, Phys. Scr. 45, 475–490. https://doi.org/10.1088/0031-8949/45/5/011
Rao, N. N., Shukla, P. K. and Yu, M. Y. (1990). Dustacoustic waves in dusty plasmas, Planet. Space Sci. 38, 543–546. https://doi.org/10.1016/0032-0633 (90)90147-I
Sagdeev, R. Z. (1966). Cooperative phenomena and shock waves in collisionless plasma, Rev. Plasma Phys. 4, 23.
Sah, O. P. and Goswami, K. S. (1994). Theory of weak dust acoustic double layers, Phys. Lett. A, 190, 317–322. https://doi.org/10.1016/0375-9601 (94)90761-7
Sarma, J. and Dev, A. N. (2014). Dust acoustic wave in dusty in warm dusty plasma, Indian Journal of Pure and Applied Physics, 52, 747–754. h t t p s : / / d o i . o r g / n o p r. n i s c a i r . r e s . i n /handle/123456789/29598.
Sarma, J. and Dev, A. N. (2014). “Dust acoustic waves in warm dusty plasma” Indian journal of pure and Applied Physics, 52, 747–754. h t t p s : / / d o i . o r g / n o p r . n i s c a i r . r e s . i n /handle/123456789/29598.
Schamel, H. (1973). A modified Korteweg-de Vries equation for ion acoustic waves due to resonant electrons, J of Plasma Phys. 9, 377–387. https://doi.org/10.1017/S002237780000756X .
El-Labany, S. K. and El-Taibany, W. F. (2003). Dust acoustic SWs and double layers in a dusty plasma with trapped electrons, Phys. of Plasmas, 10, 4685–4695 https://doi.org/10.1063/1.1623764.
El-Taibany, W. F. and Wadati, M. (2007). Sagdeev potential analysis for positively charged dust grains in nonthermal dusty plasma near Mars, Phys. of Plasma, 14, 103703–8. https://doi.org/10.1063/1.2784764.
Ghosh, S. S., Pickett, J. S., Lakhina, G. S., Winningham, J. D., Lavraud, B. and De´cre´au, P. M. E. (2008). Parametric analysis of positive amplitude electron acoustic SWs in a magnetized plasma and its application to boundary layers, J.of Geophysical Research Atmospheres, 113, A06218, 1–17. https://doi.org/10.1029/2007JA012768
Goertz, C. K., Morfill, G. E., Ip, W. H., Grün, E. and Havnes, O. (1986). Electromagnetic angular momentum transport in Saturn’s rings, Nature, 320, 141–143. https://doi.org/10.1038/320141a0.
Goertz, C. K. (1989). Dusty plasma in the solar system, Review of Geophysics, 27, 271–292. https://doi.org/10.1029/RG027i002p00271.
Gurnen, D. A., Anderson, R. R., Scarf, F. L., Fredricks, R. W. and Smith, E. J. (1979). Initial results from the ISEE-1 and -2 plasma wave investigation Space Sci. Rev. 23 103–122. https://doi.org/10.1007/BF00174114.
Kato, Y., Tajiri, M. and Taniuti, T. (1972). Precursor of Ion-Acoustic Quasishock Wave in Collisionless Plasma, Phys. Fluids 15, 865–870. https://doi.org/10.1063/1.1693995.
Kintner, P. M. (1983). in: High latitude space plasmas, eds. B. Hultqvist and T. Hagfors 54, 399–413. Plenum, New York. Ma, J. X. and Liu, J. (1997). Dust-acoustic soliton in a dusty plasma, Phys. of Plasmas 4, 253–255. https://doi.org/10.1063/1.872086.
Mamun, A. A., Cairns, R. A. and Shukla, P. K. (1996). Solitary potentials in dusty plasmas, Phys. of Plasmas, 3, 702–704. https://doi.org/10.1063/1.871905
Messenger, S. (2000). Identification of molecular-cloud material in interplanetary dust particles, Nature, 404, 968–971. https://doi.org/10.1038/35010053
Naranmandula, and Wang, K. X. (2005). New spiky and explosive solitary wave solutions for further modified Zakharav-Kuznetsov equation, Physics Letters A, 336, 112–116. https://doi.org/10.1016/j.physleta.2004.12.005
Nejoh, Y. (1987). Ion acoustic shocks in the vicinity of the critical density in a two-electron temperature plasma, Physics Letters A, 125, 320–325. https://doi.org/10.1016/0375-9601(87)90152-6
Schamel, H. (1975). Analytic BGK modes and their modulational instability, J. of plasma physics, 13, 139–145. https://doi.org/10.1017/S0022377800025927
Schamel, H. (1986). Electron holes, ion holes and double layers: Electrostatic phase space structures in theory and experiment, Physics Report, 140(3), 161–191. https://doi.org/10.1016/0370-1573 (86)90043-8.
Schamel, H. (1972). Stationary solitary, snoidal and sinusoidal ion acoustic waves, J. of Plasma Phys. 14, 905–924. https://doi.org/10.1088/0032-1028/14/10/002.
Shukla, P. K., Mamun, A. A. (2002). Introduction to dusty Plasma, IOP Publishing https://doi.org/10.1887/075030653X
Smith, D. F. and Brecht, S. H. (1985). Shock formation time and the viability of prompt MeV proton shock acceleration in solar flares J. Geophysics Res. 90(A1), 205–209. https://doi.org/10.1029/JA090iA01p00205
Tagare, S. G. and Chakrabarty, A. N. (1974). Solution of a generalized Korteweg-de Vries equation, Physics of Fluid, 17, 1331–1332. https://doi.org/10.1063/1.1694886
Tagare, S. G. (1973). Effect of ion temperature on propagation of ion-acoustic SWs of small amplitudes in collisionless plasma, J. of Plasma Physics, 15, 1247–1252. https://doi.org/10.1088/0032-1028/15/12/007
Tappert, F. (1972). Improved Korteweg-deVries Equation for Ion-Acoustic Waves, Phys. Fluids 15, 2446–2447. https://doi.org/10.1063/1.1693893.
Temerin, M., Cerny, K., Lotko, W. and Mozer, F. S. (1982). Observations of double layers and solitary waves in the auroral plasma, Phys. Rev. Lett. 48, 1175–1179. https://doi.org/10.1103/Phys.Rev.Lett.48.1175.
Wang, Y., Guo, X., Lu, Y. and Wang, X. (2016). The nonadiabatic dust charge variation on dust acoustic solitary and shock waves in strongly coupled dusty plasmas, Phys. Lett. A, 380, 215–221. https://doi.org/10.1016/j.physleta.2015.10.005
Washimi, H. and Taniuti, T. (1966). Phys. Rev. Lett., Propagation of ion-acoustic solitary waves of small amplitude, 17, 996–998. https://doi.org/10.1103/PhysRevLett.17.996