A Class of Separation Axioms in Generalized Topology
Abstract:
The purpose of this paper is to introduce and study some new class of definitions like µ-point closure and gµ –regular space concerning generalized topological space. We obtain some characterizations and several properties of such definitions. This paper takes some investigations on generalized topological spaces with gµ –closed sets and gµ–closed sets.
Author(s):
DOI:
Keywords:
References:
Csaszar, A., Generalized topology, generalized continuity. (2002). Acta. Mathematica Hungarica, 96 (4), 351-357. http://dx.doi.org/10.1023/A:1019713018007
Csaszar, A., Extremally disconnected generalized topologies. (2004). Annales Univ. Budapest, Sectio Math, 17, 151-165.
Csaszar, A., Generalized open sets in generalized topologies. (2005). Acta Mathematica Hungarica, 106, 1:2, 53-66.
Csaszar, A., d and q modifications of generalized topologies. (2008). Acta Mathematica Hungarica, 120 (3), 275-279. http://dx.doi.org/10.1007/s10474-007-7136-9
Dhana Balan, A.P., μ-Continuous Functions on Generalized topology and certain Allied Structures. (2014). Math. Sci. Int. Research jou, 3 (1), 180-183.
Guldurdek, A and Ozbakir, O.B., On – semi-open sets. (2005). Acta Mathematica Hungarica, 109 (4), 347-355.
Levine, N., A decomposition of continuity in topological spaces, (1961) Amer. Math Monthly 68, 44-66. http://dx.doi.org/10.2307/2311363
Maragathavalli, S., Sheik John, M and Sivaraj, D., On g – closed sets in generalized topological spaces. (2010). J.Adv. Res. Pure. Maths. 2 (1), 57-64,
Noiri, T, and Roy, B., Unification of generalized open sets on topological spaces. (2010). Acta. Math. Hungarica, 130 (4), 349 – 357.
Roy, B, and Jafari, S., On covering properties via generalized open sets. (2002). Annales Universitatis Scientiarum Budapestinensis de Rolando Ectros Nominate Mathematica, 55, 57 – 65.
Roy, B., On a type of generalized open sets. (2011). Applied General Topology, 12 (2), 163-173.