Pharmaceutical Applications of Xanthan Gum in Ophthalmic

Ophthalmic delivery system is one of the challenging domains of formulation and development due to tear dilutions, drug loss due to lacrimal drainage, limited volume and pre-corneal barriers. Several pharmaceutical technologies are exploited in order to counter the challenges posed by ocular route such as emulsions and suspensions. But all these technologies have stability issues which lead to their limited use.

Author(s):

  • Shiveena Bhatia, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab-140401, India
  • Tarun Kumar, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab-140401, India
  • Sonali Batra, Deparment of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana-125001, India
  • Sumit Sharma, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab-140401, India

Keywords: 

Xanthan gum, Mucoadhesive, Chemical modification, Biodegradable, Viscosifier

URL:

https://jptrm.chitkara.edu.in/index.php/jptrm/article/view/129

References:

Ahmed, V.A., & Goli, D. (2018). Development and Characterization of In Situ Gel of Xanthan Gum for Ophthalmic Formulation Containing Brimonidine Tartrate. Asian Journal of Pharmaceutical and Clinical Research, 11(7), 277-284. https://doi.org/10.22159/ajpcr.2018.v11i7.25221

Ahuja, M., Kumar, A., & Singh, K. (2012). Synthesis, characterization and in vitro release behavior of carboxymethyl xanthan. International Journal of Biological Macromolecules, 51(5), 1086-1090. https://doi.org/10.1016/j.ijbiomac.2012.08.023

Badwaik, H.R., Giri, T.K., Nakhate, K.T., Kashyap, P., & Tripathi, D. K. (2013). Xanthan gum and its derivatives as a potential bio-polymeric carrier for drug delivery system. Current Drug Delivery, 10(5), 587-600. https://doi.org/10.2174/1567201811310050010

Badwaik, H.R., Sakure, K., Alexander, A., Ajazuddin, Dhongade, A.H., & Tripathi, D.K. (2016). Synthesis and characterisation of poly(acryalamide) grafted carboxymethyl xanthan gum copolymer. International Journal of Biological Macromolecules, 85, 361-369. https://doi.org/10.1016/j.ijbiomac.2016.01.014

Bhowmik, M., Kumari, P., Sarkar, G., Bain, M., Bhowmick, B., Mollick, M., . . . Chattopadhyay, D. (2013). Effect of xanthan gum and guar gum on in situ gelling ophthalmic drug delivery system based on poloxamer-407. International Journal of Biological Macromolecules, 62, 117-123. https://doi.org/10.1016/j.ijbiomac.2013.08.024

Brunchi, C.-E., Avadanei, M., Bercea, M., & Morariu, S. (2019). Chain conformation of xanthan in solution as influenced by temperature and salt addition. Journal of Molecular Liquids, 287, 111008. https://doi.org/10.1016/j.molliq.2019.111008

Bueno, V.B., Bentini, R., Catalani, L.H., & Petri, D.F.S. (2013). Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydrate Polymers, 92(2), 1091-1099. https://doi.org/10.1016/j.carbpol.2012.10.062

Céline, F., Comesse, S., Renou, F., & Grisel, M. (2018). Hydrophobically modified xanthan: Thickening and surface active agent for highly stable oil in water emulsions. Carbohydrate Polymers, 205, 362-370. https://doi.org/10.1016/j.carbpol.2018.10.052

Ceulemans, J., Vinckier, I., & Ludwig, A. (2002). The Use of Xanthan Gum in An Ophthalmic Liquid Dosage Form: Rheological Characterization of the Interaction With Mucin. Journal of Pharmaceutical Sciences, 91(4), 1117-1127. https://doi.org/10.1002/jps.10106

Dário, A.F., Hortêncio, L.M.A., Sierakowski, M.R., Neto, J.C.Q., & Petri, D.F.S. (2011). The effect of calcium salts on the viscosity and adsorption behavior of xanthan. Carbohydrate Polymers, 84(1), 669-676. https://doi.org/10.1016/j.carbpol.2010.12.047

Hajikhani, M., Khanghahi, M.M., Shahrousvand, M., Mohammadi-Rovshandeh, J., Babaei, A., & Khademi, S.M.H. (2019). Intelligent superabsorbents based on a xanthan gum/poly (acrylic acid) semi-interpenetrating polymer network for application in drug delivery systems. International Journal of Biological Macromolecules, 139, 509-520. https://doi.org/10.1016/j.ijbiomac.2019.07.221

Hamcerencu, M., Popa, M., Riess, G., & Desbrieres, J. (2019). Chemically modified xanthan and gellan to prepare biomaterials for ophthalmic applications. Polymer International, 69(11), 1051-1057. https://doi.org/10.1002/pi.5927

Krstonošić, V., Dokic, L., Dokic, P., & Dapčević, T. (2009). Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate. Food Hydrocolloids, 23(8), 2212-2218. https://doi.org/10.1016/j.foodhyd.2009.05.003

Kulkarni, R.V., Inamdar, S.Z., Das, K.K., & Biradar, M.S. (2019). 7 – Polysaccharide-based stimuli-sensitive graft copolymers for drug delivery. In S. Maiti & S. Jana (Eds.), Polysaccharide Carriers for Drug Delivery (pp.155-177). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102553-6.00007-6

Lallemand, F., Felt-Baeyens, O., Besseghir, K., Behar-Cohen, F., & Gurny, R. (2003). Cyclosporine A delivery to the eye: A pharmaceutical challenge. European Journal of Pharmaceutics and Biopharmaceutics, 56(3), 307-318. https://doi.org/10.1016/S0939-6411(03)00138-3

Mann, A., Campbell, D., & Tighe, B.J. (2016). 2 – The ageing ocular surface: Challenges for biomaterials design and function. In T.V. Chirila & D.G. Harkin (Eds.), Biomaterials and Regenerative Medicine in Ophthalmology (2nd Edition, pp.17-43). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100147-9.00002-X

Morsi, N., Ibrahim, M., Refai, H., & El Sorogy, H. (2017). Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. European Journal of Pharmaceutical Sciences, 104, 302-314. https://doi.org/10.1016/j.ejps.2017.04.013

Rosalam, S., & England, R. (2006). Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp. Enzyme and Microbial Technology, 39(2), 197-207. https://doi.org/10.1016/j.enzmictec.2005.10.019

Sharma, S., & Batra, S. (2019). Recent advances of chitosan composites in artificial skin: the next era for potential biomedical application. In A.-M. Holban & A.M. Grumezescu (Eds.), Materials for Biomedical Engineering (pp.97-119): Elsevier. https://doi.org/10.1016/B978-0-12-816909-4.00005-1

Sharma, S., Sinha, V., Sarwal, A., & Shukla, R. (2018). Chitosan-Based Nanocarriers: A Promising Delivery System for Bioactives. NanoAgroceuticals & NanoPhytoChemicals (pp. 265-276). CRC Press. https://doi.org/10.1201/9781351139281-13

Simon Benita, & Nassar, T. (2016). US20190209466A1.

Su, L., Ji, W.K., Lan, W.Z., & Dong, X.Q. (2003). Chemical modification of xanthan gum to increase dissolution rate. Carbohydrate Polymers, 53(4), 497–499. https://doi.org/10.1016/S0144-8617(02)00287-4

Sumit, S., Shikha, L., & Rayasa, M. (2012). Potential of chitosan for nose to brain drug delivery. International Journal of Pharmaceutical Sciences Review and Research, 16(1), 47-55.

Zatz, J.L., & Knapp, S. (1984). Viscosity of Xanthan Gum Solutions at Low Shear Rates. Journal of Pharmaceutical Sciences, 73(4), 468-471. https://doi.org/10.1002/jps.2600730410

 

 

CHITKARA UNIVERSITY ADMINISTRATIVE OFFICE SARASWATI KENDRA, PO Box No. 70 SCO – 160-161,Sector – 9C, Chandigarh – 160009, India. +91-172-2741000, +91-172-4691800 chitkarauniversitypublications@chitkara.edu.in